
1. A& Math Me&s, Vol. 61, No. 4, pp. 587-600,1997 
0 1997 Elsevier Science Ud 

PII: SOO21-8928(97)00076-2 
All rights reserved. Printed in Great Britain 

0021-8928/97 $24.00+0.00 

SOLITARY AND GENERALIZED SOLITARY WAVES 
IN DISPERSIVE MEDIA-/- 

A. T. IL’ICHEV 
Moscow 

(Received 28 March 1995) 

The existence of plane solitary and generalized solitary waves in slightly dispersive media is proved. The wave processes in such 
media are described by systems of invertible partial differential equations which are subject to natural conditions, formulated 
in the paper. The proof is carried out by reducing the order of the corresponding dynamical system describing travelling waves 
and a subsequent investigation of the flow in the central manifold of the system. Q 1997 Elsevier Science Ltd. All rights reserved. 

The sufficient conditions for solitary waves to exist were formulated in [l] for a wide class of scalar 
equations of the first and second order in time, which are invariant under time inversion and inversion 
of the spatial variable. In this paper we extend the results obtained in [1] to the case of invertible systems 
of equations of arbitrary order. Generalized solitary waves, the conditions for the existence of which 
are considered in this paper, are a product of the non-linear resonance of a solitary wave and a periodic 
wave of considerably smaller amplitude than the solitary component. The ordinary solitary wave in such 
a system ceases to be a travelling wave and decays very slowly with time. 

To investigate questions of existence we will use local methods, i.e. the question concerns the existence 
of families of solitary waves whose amplitude is fairly small. Such solitary waves arise in physical problems 
as a bifurcation from a state of rest with zero wave number. A situation when the dispersion relation 
reveals resonance between a wave travelling with a phase velocity for zero wave number and a linear 
wave corresponding to a non-zero wave number is also typical. In this case solitary waves of a new type 
are possible, namely, generalized solitary waves, which carry a periodic ripple which does not decay at 
infinity (see, for example, [2]). 

To prove the existence of solutions of the solitary and generalized solitary-wave type for systems of 
the form (l.l), which satisfies the state of rest w = 0, we use the method of reducing dynamical systems, 
describing travelling waves, to systems of lower order on a central manifold. The latter is an integral 
manifold in the phase space of the system, where there are bounded solutions, which do not leave a 
fairly small neighbourhood of zero [3,4]. Further investigation of the reduced system reduces to a study 
of integrable systems, which approximate to this system as accurately as desired in the neighbourhood 
of zero. The approximating systems are a normal form of equations on the central manifold. Two types 
of normal forms of the systems are used, which describe solitary and generalized solitary waves [2]. 

1. FORMULATION OF THE PROBLEM. THE EXISTENCE 
OF SOLITARY-WAVE TYPE SOLUTIONS 

Consider a system of nth order equations describing the propagation of plane waves in dispersive 
media 

~(~,$)w+F[w,-$w,~$w)=O. ier, jSr-1, WER' (1-l) 

where Ai, Bj and C are constant n x n matrices. The vector F depends non-linearly on the arguments 
denoted in (1.1). In addition, we will assume that system (1.1) is in variant under the simultaneous 
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inversion t + -t andx -+ -x. We will henceforth call this invariance invertibility. The dispersion relation 
for (1.1) is obtained from the equation Lw = 0 where w = c exp{i(kx - (ut)}, while c is a constant vector. 

For Eq. (1.1) the dispersion equation has n branches and can be written in the form 

(1.2) 

We will put Q = gi(k) and ci = limk,eceJk-the phase velocity of infinitely long waves for the ith 
branch. 

Proposition 1 (on the dispersion relation). A phase velocity c, + ci exists for any number i + iO such 
that the order of tangency of the straight line Ci k of the graph o branch Q,, fork = 0 is equal to 2, and ‘p 
this straight line does not intersect the graph 01 any branch of the dispersion equation (1.2) anywhere 
apart from the point k = 0. 

We will further denote the corresponding velocity ci,, by c. We will be interested in travelling-wave 
type solutions of Eqs (l.l), when the unknown function w depends only on 5 = x - Vt, where Vis the 
velocity of the travelling wave. The equation describing travelling waves is obtained from (1.1) by making 
the replacements a/& -+ a/X,, alat + -J&Y@,. 

In the weak-dispersion case considered limk-,&k)/k < -. After changing to the system describing 
travelling waves and the replacement of f and x related to this change, in the dispersion relation (1.2) 
the frequency o is replaced by vk. By virtue of the corresponding properties of the functionsgi(k), after 
taking the common factor h? outside the produce sign in (1.2), the limit as k + 0 of the expression 
which remains under the product sign is finite. Moreover, if Proposition 1 is satisfied, this expression 
will obviously have a double zero root when V = c. 

It follows from the above that the equation 

ze(a t at, -Va i a& exp( ikt ) = 0 

where a~/& = L, when V = c has a zero root only of the second order and single integration eliminates 
the zero of order it in the equation obtained from (1.2) after the above replacements. 

Proposition 2 (on the non-linearity of the vector F). System (1.1) for travelling waves can be rewritten 
in the form 

WW{L($,-V-$)w+~$f(w,$w)}=o, kan-1 (l-3) 

where G(V, w) is non-degenerate in the neighbourhood of w = 0 and vi = c is an n x n matrix. System 
of equations (1.3) for solutions w, decreasing at infinity, is therefore equivalent to the system 

Yw+f=O (14 

Proposition 3. The system of equations (1.4) is solvable for the higher derivatives in the neighbour- 
hoodofw=OandV=c. 

It immediately follows from Proposition 3 that system (1.4) can be rewritten in the form of the 
dynamical system 

+=A(c)v+Se(p,v), p=V-c, VER” (l-5) 

where A(c) = A is a constant n x n matrix, and the dot denotes differentiation with respect to “time”, 
the role of which here is played by the spatial variable -00 < 5 < 00. The non-linearity of 9 comprises 
the termA -A(c) so that 9(0,0) = 0 and a%(O, O)/aV = 0. 

The invertibility of system (1.1) and the related invertibility of the dynamical system (1.5) (invariance 
under the replacement 5 + -5) denotes that a real diagonal m x m matrix R: R” + R” exists such 
that R2 = 1 and R anticommutes with the left-hand side of (1.5), i.e. AR = -J&4 and S$.t, Rv) = 
--(IA v). 

For Proposition 1 to hold, the only eigenvalue of the matrixA which lies on the imaginary axis will 
be a zero of multiplicity 2. In the case of a common situation, the matrixA has a single eigenvector $a 
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and one associated vector +i: A&, = 0,&i = +,. The phase space R” is therefore the direct sum of 
Ee and Eh, where EO is the central invariant space of the operator A (of dimension 2 in this case), while 
Eh is a hyperbolic invariant subspace A. 

The solution of system (1.5) can be represented in the form v = v. C3 vh, where v. E E. while vh E 
E,,. System (1.5) can be projected onto the half-spaces E. and Eh 

+, = tbvo+%;o~,vo +v,,h i, = A,v,+~~((c~,v, +v,) (1.6) 

(A0 = &,A1 = AL,,), where so and 9i are the projections of the vector 9 onto E. and Eh, respectively. 

Proposition 4. The equation &ho = +. holds. 
Note that the vector R$o is an eigenvector of A, corresponding to the zeroth eigenvalue. In fact, in 

view of the properties of the matrix R, we have AR$o = -&Q. = 0. Hence, R$o = aeo, where a is a 
certain constant. Multiplying the last equation by R we obtain that a = f 1. Proposition 4 fixes a = 1. 

Note that when Proposition 4 is satisfied the equation R$l = -$i holds. In fact, it follows from the 
equation A+i = $. and Proposition 4 that AR$i = - qo, whence we obtain the required result. 

If Proposition 4 is satisfied, then in the $o, Q1 basis 

(1.7) 

The central part of the solution v. can be represented in the form vo = ao(Q$o + ai(&)r. By 
the theorem of the central manifold [4], for v, which does not leave a fairly small neighbourhood 
of zero for all 5 and fairly small cL, vh = h(u, vo), where h(0, 0) = 0 and &(O, O)/&,. In addition, the 
function h inherits the property of invertibility of system (1.5), namely, Rhh(& vo) = -h(p, Rove), where 
Rh = Rh,,. 

The problem of investigating the properties of the small solutions (1.5) therefore reduces to 
investigating the properties of the small solutions of the first system from (1.6), where so = so (u, vg 
+ h(p, vo)). This system is obviously closed, and in the case considered is a second-order system. 

The conjugate matrixA* possesses an eigenvector \v~ and an associated vector v. for zero eigenvalue. 
The matrixA in the $o, $r basis has the form 

43=; :, 
I I 

the vector v. in the $o, $i basis has the components ao, and al, while the vector so has the component 
fl = (% VO> andh = (% WA w h ere the brackets ( , ) denote the usual scalar product in R”‘. 

Proposition 5. For v. = (us, ai)’ sufficiently small, in the expansionfz = updro + prui + pg@l + p& 
+ o(1 uvo I,1 v. 12) in the neighbourhood of v. = 0 the constants p. and p1 are not equal to zero (p2 = 0 
by virtue of the invertibility of the equations). 

We will prove that the following theorem holds when Proposition l-5 are satisfied. 

Theorem 1. The system of equations (1.1) has solutions of the solitary-wave type at least when their 
amplitude is fairly small. 

Proof. It follows from Proposition 5, that the first system in (1.6) in the 00, $i basis takes the form 

hi, = a1 +0(Ipv01,1v012) 
W3) 

i, =p~Cla~+p,u,2+p~a:+o(l~vol,lv,l~) 

To investigate system (1.8) further we will use the theory of normal forms [4, 51. The normal form 
of system (1.8) can be obtained after making the replacements 

v. =a+T(a), a=(a,,a,)’ 

and is given by the equation 

dr=A,(a)+N(a)+o(laP) 
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where T(a) = {Ti(ar), T*(cY)}’ and N(a) = {Nip, N*(a)}’ are polynomials of power s, and s is an 
arbitrary natural number. The polynomial N(a) satisfies the relations [4] 

D,N(a)Ga = .gN(a) (l-9) 

D,N(a) = 
aN, /aa, aN, /aa, 

aN2 1 aa, aN2 t aa, II 
Further using the invertibility of Nwith respect to R0 from (1.7): N&a) = -&N(a), and from (1.9) 

we easily obtain Ni = 0, N2 = N*(QLo). Th e normal form of Eqs (1.8) therefore has the form 

it, =a,, 4 = W.bao) (1.10) 

W7ao) = i cj(p)ai +o(lpa,l,lao12 ) 
j=l 

The vector polynomial T(a) satisfies the relations [4] 

&T(a)@ =So (a) - N(a) 

from which it follows that cl = pop + O(u2), c2 = p1 + O(u). Then, making the scaling 

in (1.10) we obtain, apart from terms of the second order of smallness 

(1.11) 

(1.12) 

Equations (1.12) have soliton-like solutions of the following types: 
1. supercritical (u > 0) solitary waves (sgn p. = 1) 

(4 w I+ = -l-solitary waves of elevation: p$ = chm2(r/2) 
(b) sgn p1 = l-solitary waves of the “well” type: /35 = -chm2(r/2); 

2. subcritical (u < 0) solitary waves (sgn p. = - 1) 
(4 w PI = -l-solitary waves of the “well” type 
(b) sgn p1 = -l-solitary waves of elevation. 

To complete the proof of Theorem 1 we will use the following lemma, the proof of which is given, 
for example, in [l]. 

Lemma 1. Suppose a* = {a;, a?}, where a$, a; are related to the solitary-wave type solution l35, 
pr of system (1.12) by formulae (1.11). Then, for sufficiently small u, a family of solitary waves a = {ao, 
aI}’ exists, which satisfy the complete system (1.8). In addition, these solutions of the complete system 
differ only slightly from a*, namely 

la-a*k cop2 exp(-ol<l) 

where co is a certain constant while o < 1. 

2. THE EXISTENCE OF GENERALIZED SOLITARY WAVES 

Below, instead of satisfying Proposition 1, we will require that the following proposition should be 
satisfied. 

Proposition 1’. A number iO of the branch Oi,, (k) = gi,(k) of the dispersion relation (1.2) exists, such 
that the order of tangency of the straight line ck (c = ci,J of the graph of the branch %0 (k) fork = 0 
is two. In addition, the straight line ck has exactly one intersection with the graph of any branch of the 
dispersion equation when k > 0. 
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In view of the invertibility of the system when k < 0 there will also be exactly one intersection of ck 
and one of the curves w,(k) (i = 1, . . . , n). 

It immediately follows from Proposition 1’ that the essential part of the spectrum of matrix A in 
(1.5) consists of four eigenvalues, which lie on the imaginary axis. These eigenvalues are a double 
zero and two non-zero pure imaginary eigenvalues + 4. The solution v. can now be represented in the 
form 

vo = a&o + a,+ + a+$+ + a-*-, 9- = 5,v a- = is, 

where @+ and +- are the eigenvectors of A, corresponding to imaginary eigenvalues + @. The vector 
function v. in the $a, Qi, $s, $+ @ basis has components ao, al, a, and a-, while the matrix has the 
form 

010 0 
000 0 

fb= 0 0 iq 0 
0 0 0 -iq 

It is clear that the eigenvectors $+ and I$- can always be chosen so that R$+ = @. In fact, by multiplying 
A@+ = iq$+ by R we obtain AR++ = -iqR$+, whence it follows that RI$+ = a@, where a = exp(ie). If 
0 # 0, we choose $+ as $+ = exp (40 /2)$+. 

In this section we will show that when Propositions 1’ and 2-5 are satisfied, system (1.1) has solutions 
of the travelling solitary wave type, possibly, with a rapidly oscillating decaying ripple, whose amplitude 
is much less than the amplitude of the solitary wave itself. The conditions for which a rapidly oscillating 
ripple must necessarily be present as a component of the generalized solitary wave are not known at 
the present time. 

By virtue of assumption 4 the matrix R. in the $e, $i, I$~, $+ I$- basis has the form 

10 00 
0 -1 0 0 

%= 

0 0 0 1 
0 0 1 i 

It follows from (2.1) that the normal form of the first system of equations in (1.6) (which in this case 
is a system of four equations) has the form [2] 

Ci, =Ct,, i=iqz+izY(p,a,,lzl*) 
(2.2) 

ir, =0(p,a,,lzl*), d=-iqZ-tZV(p,a,,lzl*) 

where Q and Y are real polynomials of arbitrary orders given by 

System (2.2), apart from terms of order up to O($), for any s approximates th9 first syste,m from 
(1.6) in the neighbourhood of v. =Oandhastwofirstintegrals]zl*=Kanda~=@=~,3 Q,=2@. 
The constants d2, ‘yo, yl are defined uniquely from the equations in the polynomial T from 2 ection 1, 
where so has the componentfi = (so, vo), f2 = (8,, v1),f3 = (so, w+), f4 = (9,, v-). Here ( , ) is the 
scalar product in Cm, wl, w+ = iji- are eigenvectors and \~r, is the associated vector of A*. Equation 
(2.2) apart from terms up to 1 pa 1, I a ]* inclusive, has the form 

ci, =a,, i = iz(q + YoW) + y2ai + Y3d) 

(2.3) 
a, =popao+p,a~; Z=-iz(q+yo(cL)+y2a~+Y3~) 
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Assuming z = r exp icp, K = 0 in (2.3) and making the scaling (1.11) and cp = ~(v~)/v, we obtain from 
(2.3) 

a,r = 0, a,g = q + O(Jl) (2.4) 

In the zeroth approximation in u system (2.4) has solutions of the solitary-wave type with r = 0, 
described in Section 1. Obviously Eqs (2.2) for K = 0 and any orders of the polynomials Q, and Y will 
have primarily solutions of the solitary-wave type with z = 0, which are approximated, apart from terms 
up to p2, by the formulae given in Section 1. Despite the fact that solitary-wave type solutions remain 
for the system which approximates the complete system (1.6), apart from terms up to any order in l.t, 
they may not be present in the complete system. To clarify this we will formulate two lemmas, which 
are proved for the types of normal forms considered [2]. 

We will first consider the constant solution of system (2.4) pa = 0, T* = 0, where p;i = 0 is a saddle 
point. This solution will also satisfy system (2.2) for any s and K = 0. 

Lemma 2. Suppose (at = 0, a! = 0, z* = 0) is a solution of system (2.2), where 9, w are polynomials 
of arbitrary order s. Then, for any sufficiently small u a unique periodic solution {Z,, a’i, Z,} of the 
complete system (the first system in (1.6)) exists. Moreover, for a certain constant C = C(s) 

uniformly with respect to 5. Similarly 

where cp* = q&, as follows from (2.4). 
The last lemma implies that, on changing to a complete system, a periodic solution with an amplitude 

as small as desired may emerge from the zero solution. 
We will further represent the solitary waves CL;, a!, z* = 0, described in Section 1, in the form {‘y*, 

01, where y* = {a:, ai}. Suppose (v,Z+) = @a, Zi, Z+}, is the extension of the zero solution to the 
solution of the complete system (1.6). We then have the following lemma. 

Lemma 3. For sufficiently small u a solution {a,,, al, a+} of the first system in (1.6) exists of the 
generalized solitary-wave type. Moreover, if we write 

(a0 v aI e a+ I= (9, ii+) + (1,6exp(icp)) 

the following limits hold 

I(?, ii+ya Q.lv-’ , II-fl” C,j.l’exp(-olcl), l6lC C21pP exp(-olQ) 

for any S, 0 < o < 1 and certain constants C, Ci and C2, where Ci and C2 depend on s. 

3. SOLITARY AND GENERALIZED SOLITARY WAVES IN 
A COLD PLASMA AND IN EXTENSIBLE RODS 

As an example of the system of equations of the type (l.l), which we have proposed and formulated 
in Section 2, we will consider the equations which describe one-dimensional wave motions in a cold 
quasi-neutral plasma [6] 

B.z + 2 sin cpB, + Bf 
=o 

2 
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(3.1) 

aB )‘- 
at B av x x+(By 

as, Bik+B au * a dv 
at - x ax 

-- 
G=-4' ax dt 

where the dependent and independent variables are used in dimensionless form. Here cp is the angle 
of inclination of the vector of the unperturbed magnetic field to thex axis, p is the perturbation of the 
particle density, By and B, are the corresponding components of the perturbed magnetic field, B, = 
cos cp, (u, II, W) are the components of the velocity vector of the ionic fluid, and Ri and R, are dispersion 
parameters characterizing the Larmor frequency of the ions and electrons. 

The two branches of the dispersion relation for (3.1) have the form [6] 

q(k) = 
k 

1 2 Ix+*x-l 2(1+ R,-‘R,- k ) 

X, =[(lfcd~cp)~+(Yf2coscp)R,~~R,-‘k~]”~ 

Y =(R,eT’ + R~~‘)cos~ v+sin’~p 

where w+(k) corresponds to the magnetoacoustic branch while o_(k) corresponds to the Alfven branch. 
The velocity c = lim,+,,a~+/k = 1 is the phase velocity of infinitely long magneto-acoustic waves. 

System (3.1) for travelling waves (p, U, U, W, By, Bz) = w(x - VI) can be represented in the form (1.3), 
where 

G(w)= diug 
v-u v-u v-u l,--, v --, 

I 9 

while the expressions for L and f follow in an obvious way from (1.1). The matrix G is invertible in the 
neighbourhood of w = 0, and the system corresponding to system (1.5) can be represented in the 
following explicit form relative to the leading derivatives with respect to { 

V’ = -Ribs 

ti=T(p+l)v +R,B,.-Rising 

by = R,(p+I)w+ F(p+l)Bz 

4 = -R,(p+l)v -T(p+l)B, 

The quantities u and p can be expressed in terms of v = {u, w, By, B,)’ algebraically 

u=&(BZ+2sintpBy+B:). p=-& 

(3.2) 

Hence, it is obvious that system (4.1) satisfies Propositions 2 and 3. The inversion matrix for (3.2) is 
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given by the formula 
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R=*diag(l,-1,1,-l) 

Henceforth we will assume that 0 < cp 6 rc/2. The matrix A from (1.5) in this case has the form 

0 -RiCOSCp 0 -Ri 

RiCOSCp 0 RiCOS* Cp 0 
A= 

0 4 0 R, cos cp 

-4 0 -R,coscp 0 

We will further consider two cases of qualitatively different behaviour of the dispersion relation of 
Eqs (3.1). 

The case cp > cpc, cp, = arctg(d&R[’ - R&-l)). 
In this case Proposition 1 is satisfied for the straight line o = k. The corresponding graphs of the 

magnetoacoustic and Alfven branches are presented in Fig. 1, where we show the mutual position of 
the straight line o = k and the graph of the dispersion relation of the cold plasma. Curve 3 corresponds 
to the Al&en branch, curve 2 corresponds to the magnetoacoustic branch, while the straight line 1 is 
the graph of w = k. Straight line 1 has a tangency of the second order to curve 2 at k = 0. In view of 
this, the secular equation for A has only one root, situated on the imaginary axis-a second-order zero. 
The eigenvector $0 and the associated vector $i, corresponding to the zeroth eigenvalue, are 

-coscp 0 v 

0 R,-' - R,? cos* q 

00 = 9 $I= 
1 0 

0 ,( R,:' - R,-' 1 cos (P 

V-3) 

Obviously, J&j0 = $. and Proposition 4 is therefore satisfied. The eigenvector w1 and the associated 
vector v. of matrixA* have the form 

v, = R,+A- 

(R,:’ - R,-‘)coscp 

0 

-R,-’ cos* cp 

0 

k 
Fig. 1. 

0 

1 

0 

RiR,-’ cosg 

Fig. 2. 
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which implies the equality (apart from terms of the third order of smallness) 

fi =< 9, y1 >= A-’ 
1 

cur, -+sin& A(R; - R,:’ )2 cos2 cp sin wf (3.4) 

where A = KIRjm’ cos2 qr(tg” cp - tg2 cp,), while 8, up to terms of the order of O(1 l.tvo I,1 v. 1’) inclusive, 
has the form 

~~ coscpw- Ri cosQsinQwB, 

9= 
-~RicosQv +~sin2QBY+ 2 &in 2QvBy -+sinp(Bz +B:)-Rjsin3cpB, 

-~RecosQBz+R,cosQsinQByBz +R,sinQwB, 

f R, cosQBy - R, sin QvBy - R, coscpsin QBy’ 

The correctness of Proposition 5 follows from (3.4) with p. = A-’ and p1 = - 3/2sin cp A’. 
The existence of a family of solitary waves for sufficiently small p = V- 1 > 0 therefore follows from 

the results of Section 2. These solitary waves will be waves of elevation 

CL 
a, = sincpch2(Il.#2 AS”2k) + w2 1 

The case tg2q < tg2cpC. 
In this case the dispersion curves have the form shown in Fig. 2 and the straight line o = k satisfies 

Proposition 1’. The vectors $. and $i, as before, are given by (3.3), while 

R,q-’ (1 - RiR,-’ COS’ Cp) 

iR,R,-’ cos cp 
9, = 9 qJ-=T+ 

q-‘(Ri-R,)COSQ 

-i b 

In Fig. 2 we show the mutual position of the straight line.o = k and the graph of the dispersion relation 
for the cold plasma for cp < (pC and k > 0. Straight line 1, in addition to a second-order tangency at the 
point k = 0 to curve 2, has an additional intersection with this curve at kc > 0. It follows from the results 
of Section 2, that in this case there are generalized solitary waves of the “well” type (in the case considered 
A < 0 and jt < 0) with oscillations whose amplitude is less than C 1 l.t 1” (C(S) is a certain constant) for 
anys. Here, we have not ruled out the possibility that the amplitude of these oscillations is equal to zero. 

We will further discuss an example in which Proposition 4 breaks down. Consider system (3.2) in the region of 
the AlfvCn velocity c = cos Q. Tbe straight line ck in this case has a second-order tangency to the graph of the 
Alfven branch 3 of the dispersion relation and intersects the magnetoacoustic branch at k > 0 (Fig. 3), i.e. Proposition 
1’ is satisfied. The matrixA has the form 

0 -Ri 
Ri(l-tg2Q 0 

0 4 
-4 0 

and its eigenvectors and associated vector are given by the formulae 
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2 

E 3 

k 

40 = 

$+ = 

0 

-1 
. 91= 

0 

1 

Fig. 3. 

I,-‘(~-Q*(P)-!?,: 

0 

R,:’ _ R-’ c 

0 

-1 
II 

4-‘[4-R,(l-tg%p)] II 

R, R,:’ 
, q-=9+. 

-iq-‘R,(l- R,:‘R,) 

It is easy to see that R&, = +. ‘Ilk indicates formally that Eqs (2.3) cannot be obtained, i.e. in the polynomials 
Q, and Y a dependence of a1 is allowed, which also occurs in this case. In view of this, the approximating equations 
have no solutions of the generalized solitary-wave type. This explains why attempts to derive the non-linear evolution 
equation (of the Kortewegae Vries type with a cubic non-linearity) for long Alfven waves of small amplitude have 
not been successful [6]. Note that the Korteweg-de Vries equation was introduced into modem plasma physics 
by Sagdeyev in 1964 [7]. 

To conclude this section we will consider the propagation of longitudinal waves in plane extensible 
elastic rods. We wiIl assume that the stretching and bending of the rod occur in the xf12 plane and that 
the rod, in the undeformed state, coincides with the x1 axis. The energy density of this rod is made up 
of the densities of the kinetic energy K, the flexural energy C and the compression energy II, where 

Here p is the density of the rod, E is Young’s modulus of the material, S is the cross-sectional area of 
the rod, pl is the moment of inertia of the cross-section about an axis passing through the centre of 
inertia of the cross-section and perpendicular to the xg2 plane, and s is the length of the arc along the 
elastic line of rod; the subscript i takes values of 1 and 2, summation is assumed over repeated indices 
(2 = xi) and the subscripts t and s denote differentiation with respect to the corresponding variable. 
After the scaling x;+Jixi, t+ r PSI --p s-4 
the ratio of the Lagrangian of the system to Young’s modulus E can be written in the form 

~,~,i (XfXi, -X~~X~~ -$(X~X, -1)2}dF 

In canonical variablesx’, = z’, + I!, A!, = u’, where zi are the components of the perturbations of the 
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tangential vector to the elastic line of the rod, ui are the components of the velocity of points of the 
elastic line and zL = Si, the system of equations describing wave propagation in the rod is a Hamiltonian 
system and has the form 

(3.5) 

The dispersion equation of system (3.5) 

(w2 - k4 )(a2 +’ -k4)=0 (3.6) 

satisfies Proposition l’, the dispersion curve for k > 0 is shown in Fig. 4 (curves 2 and 3), and straight 
line 1 corresponds to CO = V/(X). 

Further, we will put E, = s - M. The system of equations (3.5) also obviously satisfies Propositions 2 
and 3 with the unique matrix G(V, w), (w = (zi, I+)‘, i = 1,2), and the equations for travelling waves 
in expanded form in terms of leading derivatives can be written in the form in terms of leading derivatives 
can be written in the form 

ii =ui, i= I,2 

P, = -pr, +$(3r: +r; +o: +r,ri) 

1 
“2=-T 

~2-~~2+~(2r,72+2:22+r:) (p=V3-l/2) 

0 0 0 0 10 10 

0 0 0 0 
A= A= 

01 01 
0 0 0 0 o o, o o, R=diag(l,-l,-1,l) R=diag(l,-l,-1,l) 

0 0 -l/2 -l/2 0 0 0 0 

where the dot denotes differentiation with respect to 5 and the eigenvectors and associated vector of 
the matrixA are given by 

Fig. 4. 
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0 

i 

0 

-114 

It can be seen that Proposition 4 in the case considered is satisfied. The eigenvector rlrl of the conjugate 
matrix A* is identical with $r, while 

Yf+=; 

i 

0 

and p. = 1, p1 = 3/4, whence it follows that Proposition 5 is satisfied. As a result we obtain the relation 

=1 ~-2pch-~ ’ d- y5+W2h P>O 

which describes compression waves in the rod. In the equation for a, the functionfs (see Section 2) is 
identically equal to zero. This means that a+ = 0 and, consequently, the amplitude of the periodic 
component is equal to zero (this case is not a common situation) and compression of the rod in this 
case is not accompanied by bending. 

4. DISCUSSION OF THE RESULTS 

Propositions l-5 and 1’ have a specific meaning. Thus, Proposition 1 contains the condition that a 
wave having a phase velocity of ci in the linear approximation does not interact with any other wave 
(the graph of not a single branch o! the dispersion equation intersects the straight line@). Proposition 
1’ contains the condition that in the linear approximation we have resonance with the periodic wave 
corresponding to wave number ko, where the straight line I$ intersects one of the branches of the 
dispersion relation. 

The solution of the complete problem can then be written in the form 

v = u(;qbo + a;+* + u:ql+ +&I- + O(p2) 

where $o, I$+ = $- are the eigenvectors and $r is the associated vector of the matrix A from (1.5), 
corresponding to the central spectrum ofA, and 

3 IPol a; =f-p-ch 
2 hl 

-2*(+O(p2exp(-o*Q), O<o<l 

(the choice of the plus or minus sign in the last formula depends on the sign of po, p1 and p, as discussed 
in Section l), and 

a -ag ;- 24 +O(@), u: +d = rcos(q~+ti)+o(r), r= O(p”) 

for any s. The phase of the S-bounded function and S(m) - 6(- -) z 0 [2], which indicates the existence 
of a phase shift in the periodic component of the solution. The conditions for the function r to be strictly 
non-zero are unknown. Moreover, there are examples when both I # 0 and r = 0 when Proposition 1’ 
is satisfied. 
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1. Consider the equation 
au au au a% a% ;i;+cax+ud*+~+~=o 

which describes, in particular, long surface waves of small amplitude in a liquid with surface effects [g-lo]. 
Proposition I’ is satisfied for this equation. For p = V - c > 0 we have generalized solitary waves with a 
periodic ripple with a non-zero exponentially small amplitude [ll]. In addition, there is a rigorous proof of the 
fact that there are no solutions of the solitary-wave type with a ripple of zero amplitude for the range of velocities 
considered. 

2. The well-known Hiroti-Ito equation 

which is also subject to Proposition 1’ when a > 0 and b > 0, gives an example when actual solitary waves exist 
when V > 0, which means that there is no periodic component. 

Propositions 2,3 and 5 have a common form and are related to the structure of Eqs (1.1). Proposition 4 is related 
to the conservation of invertibility in the following sense. The presence of invertibility in system (1.5) means the 
expectation that inverse solutions v(e) exist, part of the components of which are even functions and part odd. 
This formally implies the existence of a diagonal matrix R (inversion) with components +l on the diagonal, such 
that the following equation is satisfied 

W-5) = v(5) (4.1) 

We recall that for small solutions v = vo + vh the function vh = h(u, vo) possesses corresponding hereditary 
symmetries, so that for inverse solutions to exist it is sufficient to indicate the solution of system (1.6) VO, which 
satisfies Eq. (4.1). 

In accordance with Proposition 4 the following equation follows from (4.1) 

Rv,(-6) = ~(-S)Rh, + ~1 (-OR+, + a+(-WP, + a-(-5Pk = 

= d-SW0 - al <-oh + 0, (-5>$- + a-(-W+ = 

= vow = %Wo +a,(5)9, +a+(5)9+ +a-(@+- (4.2) 
Q 

It follows from (4.2) that a0 is an even function, al is an odd function, and a, and a- have an even real part and 
an odd imaginary part (these properties of a+ and u- can always be achieved, as already pointed out, by an 
appropriate choice of the vectors &). These properties of the coefficients us, al, a+, a- are obviously necessary 
for even solutions to exist, which the solitary and generalized solitary waves considered in fact are. 
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